
A Preventive Approach for Securing Mobile Ecosystem:
Assist Development of Secure Mobile Apps

Joydeep Mitra Venkatesh-Prasad Ranganath Torben Amtoft
Department of Computer Science

Kansas State University
Manhattan, KS 66506

{joydeep,rvprasad,tamtoft}@ksu.edu

ABSTRACT
Mobile apps are ubiquitous. People use them for everything
from work (e.g., , email) to leisure (e.g., , games) to commu-
nication (e.g., , social media) to managing personal informa-
tion (e.g., , two-step authentication). This widespread use
of mobile apps in intimate ways makes them as an ideal tar-
get to cause harm to their users and the mobile ecosystem.
Therefore, mobile app developers have a great responsibility
to ensure their apps have no vulnerabilities. Current prac-
tices in mobile app development do not enable the developers
to achieve this goal.

In this paper, we propose an app development methodol-
ogy based on model driven development and storyboarding
to enable developers to create apps that are void of vulner-
abilities.

1. INTRODUCTION
In world of mobile apps, malicious apps exploit vulnerabil-

ities in benign apps [4] to carry out collusion attacks, unau-
thorized resource usage, or private information leaks. Lack
of tools to accurately (i.e., low false-positives and -negatives)
identify malicious apps and the innocent-until-proven-guilty
philosophy adopted by most mobile app stores (e.g., Google
Play, App Store, Microsoft Store) enables malicious apps
to enter app stores [8, 15]. Similar lack of tools to (help)
identify vulnerabilities in mobile apps leads to developers
submitting benign yet vulnerable apps for publication and
app stores publishing these apps [11, 7].

In this context, identifying malicious apps and keeping
them out of the app stores is an approach to secure the mo-
bile ecosystem (= platform + apps). This approach has
garnered immense interest in the recent past [14]. However,
this approach is curative (and also reactive) as it depends
on the identification of malware after it has been published
and possibly affected the mobile ecosystem.

An alternative approach is to fortify the mobile ecosystem
to thwart malicious actions. Specific to the above context,
considering only the malicious apps that exploit the vulner-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

abilities of benign apps, an alternative approach is to assist
app developers to not create vulnerabilities in apps. This
approach is preventive (and proactive) as it preemptively
eliminates vulnerabilities that could have enabled malicious
apps. Also, this approach is complementary to the approach
of identifying malicious apps.1

2. MOTIVATION
To appreciate why the alternative preventive approach is

interesting, consider the following real world examples of
how malicious apps exploit the vulnerabilities in benign apps
to cause harm to the users of mobile devices and how ma-
licious apps gain entry into app stores by evading malware
detection systems.

2.1 Exploiting Vulnerabilities

Example 1. Camera360 is a popular application with more
than 250 million downloads worldwide [5]. It is a camera app
that provides users with a comprehensive set of photography
options. It also provides a cloud option to store, manage,
edit and share the user’s photos. The app delegates a large
part of its business logic to web services. While it interacts
with these services using the SSL/TLS protocol, none of the
application’s trust managers check server certificates. As a
result, a man in the middle with any certificate could im-
personate the web services and set up a connection with the
app. An attacker could potentially inject random images or
steal users’ images, steal sensitive private information like
device ids and user credentials. Moreover this app also al-
lows Javascript binding over http. As a result, an attacker
could abuse private app components through the Javascript
bindings and carry out privilege escalation attacks to make a
phone call, send sms, email, take picture etc. The app devel-
opers were notified of these vulnerabilities and they recently
released a patch without these vulnerabilities.

In this case, the vulnerabilities could have been avoided
if developers had been careful when designing the app. For
example, they could have used a white-list of trusted servers.
They could have enforced their trust managers to check
server certificates were indeed from a server in the white-list
and appropriately handled cases when trust managers failed
to identify a server certificate as trust-worthy. Moreover, as

1An alternative approach could be to detect vulnerabilities
in apps submitted to app stores for publication. However,
such an approach will be harder to realize as it has to deal
with the source code of apps instead of possible abstractions
of apps that may be easier to reason about.

10.1145/1235


they allowed Javascript binding over http, they could have
used an access control-policy to manage access to compo-
nents accessible via the Javascript binding.

Example 2. In 2012, it was discovered that the Mozilla
Firefox browser on Android logged URL information vis-
ited by users [5]. Sometimes these URLs contained session
IDs. Since contents written to log can be read by all apps in
Android, a malicious app could have easily harvested these
IDs and hijacked victim’s sessions.

Recently, Android disallowed third-party apps from using
the READ_LOGS permissions. However, sensitive information
should still not be logged for apps running on older versions
of Android. This is still a real threat because app developers
often target their apps to run on older devices as well. Such
information leaks could be avoided by considering informa-
tion flow issues while designing apps.

Example 3. Another example of a vulnerability was ex-
hibited by the system app Samsung Kies in Android [5].
This popular app allowed users to sync phone and PC. Also,
this app came with all Samsung devices and could not be
un-installed on un-rooted phones. It had the ability to
read/write the phone’s SD card and install packages on the
device. It used a broadcast receiver to call an internal service
that was used to read the contents of /sdcard/restore (path
in the phone’s SD card), find out files with the extension .apk
and install them on the device. If /sdcard/restore contained
files with any other extension, the service would terminate
and return without changing anything. The broadcast re-
ceiver in question had an intent filter, which meant that it
could be invoked from any app on the device through an in-
tent. However, just exploiting this vulnerability would not
be very malicious if the malicious app did not have write
access to the SD card. To truly cause harm, a malicious app
would need to inject APK files into the SD card. Further,
Samsung Kies did not have any vulnerability either from
where files could be written to SD card. However, another
system app in Android called clipboardsaveservice had the
privilege to write to SD card and also had a vulnerability.
This system app contained a service that allowed any com-
ponent to invoke it with the file to be written and the des-
tination as input parameters. A malicious app could easily
exploit this vulnerability to write an APK file of its choice.
The vulnerable broadcast receiver in Samsung Kies could
then be invoked to install the APK into the device resulting
in a classic privilege escalation attack. The root cause of
the vulnerability on Samsung Kies was due to the fact that
the service used to install apk files in the device was not pro-
tected enough. This could have been avoided if the developers
had thought about how the service would communicate with
its environment while designing the app.

2.2 Beating Detection
While trusted repositories like Google Play continuously

improve malware detection based on static and dynamic
analysis, malware developers find ways to remain undetected.
In this battle between application stores and malware de-
velopers, the latter are a step ahead [12]. Wang et al. [13]
explain how an iOS app with a hidden buffer overflow vul-
nerability can escape detection and leak the user’s contacts.
The app requires permission to read contacts, and it is highly
likely that the user will grant this permission as the app

sends greeting cards to contacts on the user’s phone. The
app invokes a function that contacts the server to download
greeting cards. This function has a hidden buffer overflow
vulnerability. It then reads contacts and stores it in a vari-
able buf. At some point in the code it overwrites buf and
sends buf to the server. This is legitimate since there exists
no flow where contacts flows out of the app. When the app
runs, the buffer overflow vulnerability is exploited from the
server to poison the stack and change the control flow of
the program. In the modified control flow, the program now
reads the contacts, stores it in the variable buf and jumps to
the statement that sends buf to the server. Detecting such
apps that change their behavior after installation is still an
open challenge. Moreover, benign apps also load additional
code from external sources at run-time for legitimate reasons
(apk update). If dynamic code loading from remote sources
is not designed securely then malicious code can be injected
to cause the benign apps to behave maliciously [10].

3. A PROPOSAL
An alternative approach to keep malicious apps at bay is

to build an ecosystem with (almost) no vulnerabilities. This
requires preventing vulnerabilities in both mobile platforms
and mobile apps. The former is a task for platform develop-
ers while the latter is a task for app developers. Almost al-
ways, there are few platforms (e.g., Android, iOS, Windows
Phone) and each of them are developed and maintained by
a large team with access to lots of resources. On the other
hand, on each platform, there are thousands to millions of
apps developed and maintained by numerous small teams
with access to relatively little resources. Given this situa-
tion, the task of preventing vulnerabilities in platforms is
relatively easier than the task of preventing vulnerabilities
in apps as the latter requires cooperation and coordination
between large number of unrelated teams. Hence, we need
a solution that assists app developers to build vulnerability-
free apps.

Since current app development practices do not provide
assistance to prevent vulnerabilities and malicious apps that
exploit vulnerabilities in other apps can enter app stores, we
need to rethink about the ways to develop apps that are void
of vulnerabilities.

Our proposal is to adapt and adopt an idea prevalent in
software engineering and program verification communities
– enable developers to reason about non-functional require-
ments/properties/aspects (e.g., security) at development time
and then automatically bake them into apps (as opposed to
retrofitting them on to apps).

Any realization of this proposal will need to assist devel-
opers

1. use and specify properties about apps,
2. reason about these properties in the context of apps,
3. ensure implementation of apps satisfy desired proper-

ties, and
4. possibly generate evidence about properties satisfied

by apps.
To devise a realization of this proposal, we will briefly

describe MDD and storyboarding followed by our realization
of this proposal.

3.1 Model Driven Development (MDD)
In software engineering community, Model Driven Devel-

opment (MDD) [6] is a well-known methodology to develop



systems by starting from an abstract model of a system
and then iteratively refining the model to finally arrive at
an implementation of the system. By controlling the de-
tails added in various refinement steps and using appropri-
ate automation, developers can derive different implemen-
tations of a system starting from the same model of the
system. Similarly, by considering different views (projec-
tions) of the model at various refinement steps along with
appropriate automation, developers can reason about var-
ious aspects/properties of the system, e.g., security, safety,
performance. By combining these abilities to reason about
the model and refine the model, it is possible to derive an
implementation of the system with desired properties (when
feasible).

In recent years, there has been a push to develop mobile
apps at a higher level of abstraction to quickly deliver the
same app on different mobile platforms. In this vein, cross-
platform frameworks like Cordova [1] and Xamarin [2] en-
able developers to develop apps in a platform independent
manner and have the apps execute on different platforms
with no extra development effort. In a similar vein, since
MDD is well-suited hinges on the use of high-level models
and supports automatic code generation for various plat-
forms (via tooling), MDD may be well-suited for mobile app
development.

The use of models and different views (projections) of
models in MDD combined with automated reasoning tech-
niques borrowed from program verification community can
enable developers to reason about different aspects of apps
both individually and in combination. Unlike large-scale real
world programs with huge state space, mobile apps are typ-
ically componentized and each component has a relatively
small contribution to the global state space. Further, in-
stead of reasoning about the apps at source code level (which
can be very hard for Java or Javascript code), with MDD,
such reasoning to be performed efficiently and effectively at
higher levels of abstraction.

A major hindrance to adopting MDD is that current tools
and technologies that enable MDD do not easily fit into
developer’s work flow. In a recent empirical study of 50
practicing software developers, 35 of them stated that they
do not use UML [9]. However, visual design methods like
storyboards, which are gaining in popularity, can be used to
enable MDD.

3.2 Storyboarding
Storyboarding is a well-known design technique in which

illustrations or images are placed in order to pre-visualize
scenarios. In the software world, it is used to design the
work flow of software applications based on user scenarios.

Mobile app developers use storyboarding to quickly create
a prototype (akin wire frame) based on which further devel-
opment proceeds. Today, there are several tools to help
developers create storyboards as the first step in develping
mobile apps. Most notable of these tools is XCode, a IDE to
develop iOS apps [3]. It allows developers to visually create
all the screens of an iOS app and connect them in the or-
der a user would navigate them. Also, it allows developers
to enrich screens with data-related graphical widgets and
associate them with data elements (variables) in the imple-
mentation of the app. Further, it allows the developer to
execute the storyboard on a simulator or on a real device.

Clearly, given the purpose and visual inclination of story-

boards, they can serve as basic models of mobile apps. With
appropriate extensions to storyboards (e.g., annotations, se-
mantics for widget actions), they can serve as models to
reason about mobile apps.

3.3 The Methodology
Given the characteristics of MDD and storyboarding, we

propose a methodology based on the simple combination
of storyboarding and MDD – storyboarding will serve as
the initial modeling technique, storyboards will serve as the
initial models, and existing MDD techniques will be applied
to storyboards.

4. HOW WOULD IT WORK?
In this section, we will illustrate the proposed methodol-

ogy by considering a bank app as an example. The app al-
lows users to log into the bank, select one of their accounts,
and send a statement of the selected account to an email
address of their choice.

Following is a“story”of how a user typically interacts with
the app.

• The user launches the app by clicking on its icon on
his/her mobile phone. Upon launch, the app displays
the Login screen.

• The user enters her Username and Password and clicks
on the Submit button. This will take the user to the
Home screen or will keep the user in the Login screen.
If the user’s credentials are recognized, then she will be
taken to the My Accounts screen or else she will stay
on the Login screen.

• In the My Accounts Screen, the user is shown a list
of accounts based on her user name. The user selects
an account and clicks on the Email Statement button.
The system will attempt to email the latest statement
of the selected account to the given email address (pro-
vided by the user in the email client). If the email is
sent successfully, a message is displayed to the user
(on a different screen); otherwise, she stays on the My

Accounts screen.
Figure 1 shows the initial storyboard for the app. This

is similar to what app developers design initially. We will
demonstrate how this model can be iteratively refined to
eventually arrive at a platform specific model. The final
storyboard will look like the one shown in Figure 2. But we
will not achieve that before a few iterations.

Iteration 1 (Control Flow). The storyboard in Figure 1
captures all possible transitions an app can make. It does
not say what happens when the user performs an action,
e.g., clicks a button. For example, the storyboard only indi-
cates that two transitions are possible from the Login screen.
It does not indicate when those transitions will be trig-
gered. The story of the app outlined above suggests that
both these transitions are possible when the user clicks on
the Submit button. In Figure 2 user actions are depicted as
transition labels of the form αaction(Label). At this point,
Figure 2 will look like Figure 1 only with the transitions
labeled with user action specifications, e.g.,αlaunch() and
αclick(Signin). Also, we can verify the design for correct-
ness, e.g., MyAccounts will be displayed if and only if the user
was on Login screen and had clicked the SignIn button.



Figure 1: Initial Storyboard.

Iteration 2 (Guarded Control Flow). In the user story
outlined above, some transitions depend on user actions
and some additional constraints. We refer to such addi-
tional constraints that are independent of user actions as
predicates (denoted by φ). A transition is enabled only if
the associated predicate evaluates to true. In Figure 2, a
transition from Login screen to My Accounts screen is en-
abled if the action has been performed in the Login screen
and if the credentials have been recognized. The predicate
φ=(λprivate(LOGIN SERV, get,Login.Username.info),
Login.Password.info) is used to represent the action required
to recognize the credentials. The predicate φ= takes two ar-
guments and checks for their equality. The first argument
λprivate(LOGIN SERV, get, Login.Username.info) denotes
the retrieval of the password for the provided user name
from an external component identified by LOGIN_SERV. The
second argument Login.Password.info denotes the pass-
word entered by the user. The private keyword indicates
the λ expression can be invoked only from within the app.

At this point, the refined model can be verified by evaluat-
ing it for previously checked properties and new properties.
For example, the previously checked property that MyAc-

counts can only appear if the user was on Login and had
clicked on the Sign In button should hold true even now.
We can additionally assert that MyAccount can appear only
if the user’s username and password have been verified.

Iteration 3 (Information Flow). In My Accounts screen,
the user should be able to see a list of accounts based on her
user name. For this purpose, the user name entered in Login

screen should be available in this screen. This is specified by
associating the data flow requirement {u=Login.Username.Info}
(in orange in Figure 2) with the transition from Login screen
to My Accounts screen.

Such information flow specification can help check if the
app leaks sensitive information. For example, the developer
might want to assert the app never leaks the user name. At
this point, based on the information in the storyboard, the
methodology will deduce the app is leaking the user name
into LOGIN_SERV (as it is unclear if the user name can be
sent to LOGIN_SERV).

Iteration 4 (More Information Flow). At this point, there
is no information about (1) what the user will see on the My

Accounts screen or (2) what can she do when she is on My

Accounts screen.

With regards to (1), according to the textual story, in My

Accounts screen, she should see a list of accounts that she
owns. The specification Acc.Info = λprivate(ACC SERV,get,u)
(in Figure 2) provides the information required by (1). The
specification means the information in Acc widget is initial-
ized with the information retrieved from ACC_SERV based on
the user name (captured by Login.Username.info).

With regards to (2), the user will transition from My Ac-

counts screen to Message screen if (a) she clicks on the Email
Statement widget, (b) the latest statement for the selected
account could be retrieved and saved to a file on the device,
and (c) the saved file was successfully emailed to the pro-
vided address. Constraint (b) is denoted by λprivate(FILE PATH,
save,λprivate(STMT SERV,get,MyAccounts.Acc.selectedInfo))
(in Figure 2) where STMT_SERV denotes the component from
where the statement is retrieved and FILE_PATH is the path
where the statement is saved. The expression evaluates to
true only if the statement was saved successuflly. Constraint
(c) is denoted by λprivate(EMAIL,invoke,FILE PATH) where
EMAIL is the email client used to email the statement saved
at FILE_PATH. This expression evaluates to true only if the
email is sent successfully.

At this point we verify some additional properties. Note
that the earlier properties should hold as well. For example,
we can assert security properties like an email can be sent
by this app only if the user explicitly requests for it. A
manual analysis reveals that this property indeed holds true
because the only way to invoke EMAIL is if the transition
from MyAccounts to Message is enabled. For that to happen
the user must click on EmailStatement.

Iteration 5 (Information Classification). So far, all in-
formation was assumed to be sensitive and every external
component was assumed to be untrusted. This prohibited
accurate information flow analysis. For example, in Iteration
3 the analysis deduced that user name was getting leaked to
LOGIN SERV, but LOGIN SERV is a trusted component
so it should be allowed. To avoid this situation, in this iter-
ation, only sensitive information is tagged as high(h) while
all other information is (implicitly) tagged as low(l). Simi-
larly, external components are tagged as trusted(t) and un-
trusted(u) as shown in Figure 2. With these annotations,
various information flow properties can now be verified ac-
curately. For example, we can confirm the app does not leak
user name to untrusted regions.We can further assert that
sensitive information never flows into untrusted regions.

However, in this model, there exists a information flow



Figure 2: Final Storyboard.

path along which the sensitive information account state-
ment flows into an untrusted sink FILE_PATH. Assuming
there is no more information available about account state-
ment and FILE_PATH that can influence the information flow,
a design flaw that leads to a security vulnerability has be un-
covered and needs to be addressed, e.g., by encrypting the
account statement or changing FILE_PATH to be in a trusted
region of storage accessible only to the app and the email
client. This trust chain can be extended further to only
involve trusted email clients (e.g., white-listed) by annotat-
ing the corresponding lambda expression to invoked trusted
email clients (denoted by the subscript T on EMAIL).

Finally, we will arrive at a storyboard as shown in Fig-
ure 2. From this model, implementations (source code) that
embody various checks and computations (as indicated by
the annocations) required to exhibit the desired properties
can be generated by the push of a button.

5. CHALLENGES
While the proposed approach is interesting and can be

immensely useful, the following challenges (tasks) need to
be addressed (tackled) to realize the approach and foster its
adoption in the community.

1. Design an accessible visual language to describe story-
boards and annotate them with properties that can be
used for automated reasoning.

2. Extend existing tools and technologies or develop new
ones to support the proposed approach, e.g., model

analysis, property verification, code generation.

3. Evaluate if and to what extent does the approach help
develop secure mobile apps and eventually secure mo-
bile ecosystems. In addition, identify the class of prop-
erties that are (not) addressed best by the approach.

4. Evaluate if and to what extent does the approach af-
fect the productivity of app developers. Depending on
when and how this evaluation is done, it could inform
the realization of the approach.

5. Evaluate if and to what extent the approach delivers
on its promise of traceability – properties satisfied by
the model will be also be satisfied by the final imple-
mentation derived from the model.

6. Collect and share the set of properties that is common
across multiple apps on a mobile platform.

7. Evaluate how effective are the set of communal prop-
erties in securing the apps and the ecosystem.

8. Generate machine checkable evidence for the proper-
ties satisfied by the apps that can be used to by app
stores to review apps before publication.

6. REFERENCES
[1] Documentation for building apps with cordova.

Available at
https://cordova.apache.org/docs/en/latest/.

https://cordova.apache.org/docs/en/latest/


[2] Documentation for building apps with xamarin.
Available at https://developer.xamarin.com/guides/.

[3] Apple. Cocoa application competencies for ios -
storyboard. Available at Apple Developer
Documentation.

[4] E. Chin. Helping developers construct secure mobile
applications, 2013. Available at
https://escholarship.org/uc/item/4x48p6rz#page-1.

[5] J. J. Drake, Z. Lanier, C. Mulliner, P. O. Fora, S. A.
Ridley, and G. Wicherski. Android Hacker’s Handbook.
Wiley Publishing, 1st edition, 2014.

[6] R. France and B. Rumpe. Model-driven development
of complex software: A research roadmap. In 2007
Future of Software Engineering, FOSE ’07, pages
37–54. IEEE Computer Society, 2007.

[7] M. Gomez, R. Rouvoy, M. Monperrus, and
L. Seinturier. A Recommender System of Buggy App
Checkers for App Store Moderators, 2014. Available at
Online Tech Report.

[8] Y. Kikuchi, H. Mori, H. Nakano, K. Yoshioka,
T. Matsumoto, and M. van Eeten. Evaluating malware
mitigation by android market operators. In 9th
Workshop on Cyber Security Experimentation and
Test (CSET 16). USENIX Association, 2016.

[9] M. Petre. Uml in practice. In Proceedings of the 2013
International Conference on Software Engineering,
pages 722–731. IEEE Press, 2013.

[10] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute this! analyzing unsafe and
malicious dynamic code loading in android
applications. Citeseer, 2014.

[11] A. Sadeghi, N. Esfahani, and S. Malek. Mining the
categorized software repositories to improve the
analysis of security vulnerabilities. In International
Conference on Fundamental Approaches to Software
Engineering, pages 155–169. Springer, 2014.

[12] V. V. T. Tong, J.-F. Lalande, and M. Leslous.
Challenges in android malware analysis. Number 106,
pages 42–43, 2016.

[13] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll
on ios: When benign apps become evil. In Presented
as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 559–572. USENIX, 2013.

[14] M. Xu, C. Song, Y. Ji, M.-W. Shih, K. Lu, C. Zheng,
R. Duan, Y. Jang, B. Lee, C. Qian, S. Lee, and
T. Kim. Toward engineering a secure android
ecosystem: A survey of existing techniques. ACM
Comput. Surv., 49(2):38:1–38:47, 2016.

[15] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In NDSS,
volume 25, pages 50–52, 2012.

https://developer.xamarin.com/guides/
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://escholarship.org/uc/item/4x48p6rz#page-1
https://hal.inria.fr/hal-01079681/file/RR_BuggyAppCheckers-v2.pdf

	Introduction
	Motivation
	Exploiting Vulnerabilities
	Beating Detection

	A Proposal
	Model Driven Development (MDD)
	Storyboarding
	The Methodology

	How would it work?
	Challenges
	References

